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Abstract 

Rudner (2001, 2005) proposed a method for evaluating classification accuracy in tests based on item response 
theory (IRT). In this paper, a latent distribution method is developed. For comparison, both methods are 
applied to a set of real data from a state test. While the latent distribution method relaxes several of the 
assumptions needed to apply Rudner’s method, both approaches yield extremely comparable results. A 
simplified approach for applying Rudner’s method and a short SPSS routine are presented. 

 

Introduction 

Rudner (2001, 2005) proposed a method based on item 
response theory (IRT) for evaluating accuracy for tests 
used to classify examinees into one of a finite number of 
score categories. Such classification has long been 
common practice with the pass/fail distinctions of 
licensure and certification examinations and is not 
common practice with the basic/ proficient/advanced 
distinctions of state assessments. Rudner first developed 
his approach for tests with dichotomous items and then 
extended the method to tests with partial credit items.  

For simplification of descriptions, I will change the terms 
used by Rudner without changing the concept. He first 
mapped the x cut score(s) onto the θ scale and divided the 
θ scale into x + 1 score category ranges. He then used the 
θ̂  and its standard error of estimation to build a 
distribution of the θ̂  for each examinee. By summing up 
the density of the distribution within each score category 
range across all examinees, he was able to calculate the 
expected proportion of examinees who fall into each of 
the score category ranges. A classification table comparing 
the expected and observed proportions in each score 
category range provided a basis for evaluating the 
classification accuracy of the test.  

Li and Sireci (2005) adapted this method to number 
right, or raw, score scales. A simulation study to evaluate 
the properties of Rudner’s method (Martineau, in press) 
found that his classification accuracy index was a useful 
method for evaluating the classification categories of 15 or 
more students in each of the categories. 

Rudner’s method assumes estimation error is normally 
distributed around each examinee’s estimate of θ. Based on 
Mislevy’s (1984) seminal latent distribution paper, an 
alternate method has been developed in this paper to 
accomplish the same goal without the basic assumptions. 
Like Rudner’s method, this latent distribution method 
provides for calculating the expected number of examinees 
in each of the score category ranges and compares them 
with the observed number of examinees in the ranges. 
Both methods are applied to a set of real data from a state 
test for comparison. 

Point Estimation of θ vs. Latent 
Distribution 

Most IRT-based tests intend to find a point estimation of 
an examinee’s ability on the latent θ scale. Maximum 
likelihood method is often used for this purpose by 
calculating the likelihood function with an examinees’  
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response vector and the item parameters. For dichotomous 
items, the likelihood function is defined as: 
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where  i is the examinee; 

j is the item on the test; 

u is a response to item j for examinee i, coded as 1 
for a correct answer and 0 for an incorrect answer; 

iu
jP  is the probability of a correct answer to the 

item j at θ; and 

iu
jQ is the probability of an incorrect answer to the 

item j at θ that can be calculated as 1- iu
jP .  

The θ value that maximizes the likelihood function is the 
estimated θ̂  for this examinee. An estimated standard 
error of estimation (SEE) of this θ̂  can be calculated, 
based on the test information at the θ̂ . This SEE estimate 
is the standard deviation of the θ̂  distribution. The θ̂  
converges to θ as the number of examinees and number of 
items increase.  

Figure 1: A Likelihood Function and Estimated θ = 0.33 
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Figure 1 is a plot of an examinees’ likelihood function 
from a 35-item test; the θ̂  for the examinee is 0.33. Note 
that the likelihood function is not symmetrical around θ̂  
and that the lower tail approaches 0 at a much slower rate. 

Mislevy (1984) discussed the estimation of latent 
distributions when point estimation of θ was poorly 
estimated as a result of too few items. He proposed the 
method for estimating the population parameters from the 
individual latent distributions, not the point estimates of 
θ. Using Bayesian estimation, an examinees’ latent 
distribution was defined as the posterior distribution, 

which was the likelihood function weighted by a prior 
distribution. For our purposes, a likelihood function 
suffices because the item parameters are “known” and the 
examinees’ scored responses are known. It is a simple 
“conditional maximum likelihood estimation of ability” 
described by Hambleton and Swaminathan (1985. p. 81). 
If a “non-informative” prior distribution is set, the 
posterior distribution is equal to the likelihood function. 

A likelihood function of an examinee can be interpreted as 
the likelihood of an examinee’s ability at each θ point 
given his/her responses and the characteristics of the 
items. The function is another representation of an 



 Expected Classification Accuracy Using Latent Distributions, Guo 

© 2006, Graduate Management Admission Council®. All rights reserved. 3

examinee’s ability as a distribution across the θ scale as 
plotted in Figure 1 and can be used for the purpose of 
calculating the expected proportion of examinees in each 
of the score category ranges. This is similar to Mislevy’s 
situation, where the population distribution in each of the 
score category ranges is the interest. It serves as an 
alternative method to the method proposed by Rudner 
(2001, 2005), who essentially built an examinee’s 
distribution of θ̂  with the point estimate of θ and its 
standard error of estimation.  

Latent Distribution Method 

The latent distribution method involves seven steps. Each 
is defined and described in this section. 

1. Map the cut scores onto the θ scale. After setting the 
standards for a test, x cut scores will be chosen to 
divide the reporting scale into r score category ranges 
(r = x +1). Convert these cut scores to their 
corresponding θ values and add the θ values 
corresponding to the lowest and highest possible 
scores on the test. There are m θ values (m = x + 2). 
That is, m = 1, 2, …, M. Here θ1 = the θ value 
corresponding to the lowest possible score and θM 
corresponds to the highest possible score on the test. 

2. Calculate likelihood. Calculate the likelihood of an 
examinee i in score category range r using his or her 
scored responses, µ1 to µn, and the item parameters, a1, 
b1, c1, …, an, bn, cn, of a 3-parameter logistic IRT 
model, for example. 
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For the convenience of computations, the continuous 
θ scale can be made into discrete categories based on x 
θ points with equal distances. The likelihood can be 
calculated as follows: 
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3. Normalize the likelihood. Normalize the likelihood 
so that the sum of the likelihood for each examinee 
equals to 1. This is necessary because the distributions 
must be truncated at the lowest and highest obtainable 
scores, not at –∞ and ∞, in order to do the 
calculations. After normalization, the sum of the 
likelihood across all examinees will be equal or very 
close to the total number of examinees. This, in turn, 
will simplify the interpretation of the results.  
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Similarly, the sum of the likelihood in the 
denominator can be calculated as the sum across the 
discrete θ values from θ = 1 to θ = M.  

4. Compute the observed number of examinees in a score 
category range s. The observed number of examinees 
in a score category range s is the number of examinees 
whose maximum likelihood point estimates, θ̂ , fall in 
that category range. 

)1ˆ( +<≤= mms NO θ  
5. Compute the expected number of examinees in each 

cell N(s,r) of the classification table. For the examinees 
who fall in the observed score category range s, their 
numbers in each of the expected score category range r 
can be calculated as follows: 
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6. Assemble the classification table. Table 1 is an 
example. Please note that decimal places will be 
encountered in the cells as a result of the proportional 
redistribution of some individual examinees into more 
than one expected score category.  
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Table 1: Example of a Classification Table 

Expected N in score category range  

r1 … rM 

s1 N(1,1) N(1,…) N(1,M) 

… N(…,1) N(…,…) N(…,M) 

Observed N in 
score category 
range 

sM N(M,1) N(M,…) N(M,M) 
 

7. Calculate the accuracy index. The accuracy index can 
be calculated in the same way proposed by Rudner. It 
is simply the percentage of the sum of the diagonal 
divided by the total number of examinees.  
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The accuracy index indicates the percentage of examinees 
who are correctly classified. The higher the index, the 
more accurate the test is in classifying examinees into 
categories. 

Because the likelihood functions are computed using item 
parameters, an important assumption here is that the item 
parameters are “known.” That is, the item parameter 
estimates are reasonably close to their true values. For best 
results, be sure the item parameters are calibrated with a 
large number of examinees whose abilities cover the entire 
range of the θ scale where scores are reported. For the 
latent distribution method, some of the assumptions 
required for Rudner’s method, such as the normality of 
the SEE estimates and the reasonable approximation of θ̂  
to θ, are no longer needed.  

An Alternate Approach to Applying 
Rudner’s Method 

Instead of computing the proportion of examinees in each 
of the expected score categories, the number of examinees 
was calculated using the same basic steps as those for the 
latent distribution method, but with a few minor changes.  

This alternate calculation yields the same results and is 
easier to apply. The following changes were applied: 

1. The lowest and highest possible scores in Step 1 of 
the latent distribution method were replaced by the 
negative and positive infinities. 

2. The likelihood function in Step 2 of the latent 
distribution method was replaced by a normal 
distribution with a mean of the θ̂  and a standard 
deviation of the standard error of estimation (SEE) 
for each examinee and can be computed as 

ˆ ˆ(  + 1, ,SEE) ( , ,SEE)ri m mφ φ θ φ θ= − , the density 
between m and m +1. 

3. Step 3 of the latent distribution method is not needed 
because the area under a normal curve is 1. 

4. ri
i s
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∈
∑ in Step 5 of the latent distribution method 

was replaced with ri
i s
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The alternative computations for Rudner’s method need 
only several lines of codes in a statistical analysis program 
like SPSS or SAS. An example with SPSS codes is 
included in the Appendix. 

Comparison with an Example 

Both Rudner’s and the latent distribution methods were 
applied to real test data for comparison. The data used is 
from a state test with 32 items and reported scores 
ranging from 275 to 575. The reliability is 0.87 
(Cronbach’s alpha). Three proficient categories are 
reported for students: Basic (275 to 410), Proficient (411 
to 446), and Advanced (447 to 575). Table 2 presents  
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the reported scores and their corresponding θ values used 
in calculating the number of examinees falling into each 
score category range for both methods. In Table 2, m1 is 
the θ corresponding to the lowest possible score for the 
latent distribution method and –∞ for Rudner’s method; 

m2 is the first cut score; m3 is the second cut score; and 
mM is the θ corresponding to the highest achievable score 
for the latent distribution method and ∞ for Rudner’s 
method. 

 

Table 2: θ and Reported Scores Used in the Calculations  

 m1 m2 m3 mM 

Reported Score 275 410.5 446.5 575 

θ for Latent Distribution Method –3 0.1755 1.1475 3 

θ for Rudner’s Method –∞ 0.1755 1.1475 ∞ 
 

Item parameters used for calculating examinees’ likelihood 
are the same ones from which the point estimates of θ̂  
and the standard errors of estimation were derived.  

 

Table 3: Classification Table Using Rudner’s Method 

Expected  

Basic Proficient Advanced 

Basic 2690 44.1% 282 4.6% 1 0.0% 
Proficient 236 3.9% 1961 32.2% 190 3.1% 

Observed 

Advanced 1 0.0% 155 2.5% 582 9.5% 
Sum 2927 48.0% 2398 39.3% 773 12.7% 

 

Table 3 presents the observed and expected number of 
examinees and their percentages using Rudner’s method, 
and Table 4 exhibits the same information calculated with 

the latent distribution method. The estimated 
classification accuracy indices are .858 for Rudner’s 
method and .870 for the latent distribution method.  

 

Table 4: Classification Table Using the Latent Distribution Method 

Expected  

Basic Proficient Advanced 

Basic 2747 45.0% 226 3.7% 0 0.0% 
Proficient 225 3.7% 1951 32.0% 212 3.5% 

Observed 

Advanced 0 0.0% 129 2.1% 608 10.0% 
Sum 2927 48.7% 2306 37.8% 820 13.4% 
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Table 5 shows the differences between the two methods in 
the expected number of examinees in each of the three 
proficiency categories. The differences are calculated by 
subtracting Table 3 values (Rudner’s method) from Table 
4 values (the latent distribution method) for each cell. 

As shown in the sums, the latent distribution method 
tends to put more examinees in the Basic and Advanced 
categories and fewer examinees in the Proficient category 
than Rudner’s method.  

 

Table 5: Differences between the Two Methods 

Expected  

Basic Proficient Advanced 

Basic 57 –56 –1 
Proficient –11 –10 22 

Observed 

Advanced –1 –26 26 
Sum 45 –92 47 

 

Table 5 also shows that, for the low ability examinees who 
fell into the observed Basic category (about 48% of the 
total), the latent distribution method puts more of those 
examinees into the expected Basic category than does 
Rudner’s method. For the examinees in the observed 
Proficient and Advanced categories (about 52% of the 
examinees with higher ability), the latent distribution 
methods puts more of those examinees into the expected 
Advanced category than Rudner’s method does. It seems 
that the latent distribution method produces an expected 
ability distribution with fatter tails than that produced by 
Rudner’s method. However, the difference is very small 
between the two methods, about 1.2%, as indicated by the 
classification accuracy indices. 

Conclusions and Discussions 

Today, more and more achievement tests are reporting 
both individuals’ scores and performance categories, such 
as Pass/Failure or Basic/Passing/Advanced. Evaluating 
the accuracy of the classification of examinees into the 
categories becomes increasingly important in educational 
settings. Rudner (2001, 2005) proposed an index for this 
purpose. An alternative was proposed in this paper using 
latent distributions. 

Both methods were applied to a set of real test data from a 
state test for comparison. The comparison showed that 
the latent distribution method tends to put more low 
ability examinees into the expected low ability categories 

and more high ability examinees into expected high ability 
categories than does Rudner’s method. However the 
difference is very small, about 1.2%.  

The latent distribution method uses the same strategy as 
Rudner’s method. The classification index is the 
percentage of agreement between the observed and the 
expected proportions of examinees in each of the 
categories under the IRT framework. The latent 
distribution method differs from Rudner’s method in 
calculating the expected number of examinees in each 
category with the posterior distributions (the normalized 
likelihood function) of the examinees. As a result, some 
assumptions for Rudner’s method are no longer needed. 
Therefore, the latent distribution method might be a more 
robust method when the estimation of θ is less accurate 
due to small number of items on a test or low test 
information at some ability levels. The comparison was 
made with a reliable test (α = 0.87). Further research is 
needed to see how the conclusion of small differences 
between the two methods holds when the θ estimation 
becomes poor. 

When the assumptions are met, or even approximated, 
Rudner’s method is a very easy method. Using the 
procedure and calculations proposed in this paper, it only 
takes several lines of code in a statistical package to 
calculate the expected number of examinees in the 
classification table. While harder to apply, the latent 
distribution method outlined in this paper has a stronger 
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theoretical foundation. This method is always applicable. 
The limitation of this method is that it relies on sound 
parameter estimates as expected classifications are 
computed at every possible theta point.  
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Appendix 

An SPSS Example of Computing Expected Classifications with Rudner’s Method 

Data and Data File Layout.  

The data file contains one record for each examinee with four variables: Examinee ID, estimated θ (ThtEst), standard 
error of estimation (ThtSEE), and observed classification (Group: coded as 1=Obs. Basic, 2=Obs. Proficient, and 
3=Obs. Advanced). 

SPSS codes for calculating the densities in the three categories for each examinee. 
COMPUTE ExBasic = CDF.NORMAL(-3,ThtEst,ThtSEE). 
COMPUTE ExProfi = CDF.NORMAL(1.1475,ThtEst,ThtSEE) - CDF.NORMAL(.1755,ThtEst,ThtSEE). 
COMPUTE ExAdvan = 1 - CDF.NORMAL(1.1475,ThtEst,ThtSEE). 
EXECUTE. 

SPSS codes for calculating the expected number of examinees in each of the cells in a classification table. 
SPLIT FILE 
 SEPARATE BY Group. 
DESCRIPTIVES 
 VARIABLES=ExBasic ExProfi ExAdvan 
 /STATISTICS=SUM. 
EXECUTE. 




